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Randomness cost of masking quantum information and the information conservation law
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Masking quantum information, which is impossible without randomness as a resource, is a task that encodes
quantum information into the bipartite quantum state while forbidding local parties from accessing that
information. In this paper, we disprove the geometric conjecture about unitarily maskable states [Modi, Pati,
Sen, and Sen, Phys. Rev. Lett. 120, 230501 (2018)], and make an algebraic analysis of quantum masking. First,
we show a general result of quantum channel mixing that a subchannel’s mixing probability should be suppressed
if its classical capacity is larger than the mixed channel’s capacity. This constraint combined with the well-known
information conservation law, a law that does not exist in classical information theories, gives a lower bound of
randomness cost of masking quantum information as a monotone decreasing function of evenness of information
distribution. This result provides a consistency test for various scenarios of fast scrambling conjecture on the
black-hole evaporation process. Our results are robust to incompleteness of quantum masking.

DOI: 10.1103/PhysRevA.101.052322

I. INTRODUCTION

How can one hide information from two parties holding
one’s containers? Naïvely, one can tear the piece of paper
containing the information into two pieces and distribute them
to two parties so that it remains recoverable when the pieces
are gathered together at a later point in time. However, this
method leaks some amount of information to each party. To
hide n bits of classical information completely, one needs to
get n bits of classical information (“randomness”) maximally
correlated with it, for example, by using a one-time pad cipher
[1]. Is it possible to hide n qubits of quantum information by
making n qubits quantumly correlated with it? The no-hiding
theorem and the no-masking theorem answer this question
negatively for the pure state case [2,3]. In our previous work,
we showed that one still needs additional n bits of randomness
to hide n qubits of quantum information [4]. Results of [4]
imply that different types of quantum correlation allowed
in quantum masking processes require different amounts of
randomness consumption, but the exact relation is still an open
problem.

In this paper, we illuminate an information theoretical
reason behind these phenomena and specify the backbone of
the mechanism: the information conservation law of quantum
mechanics. The information theoretical investigation yields
a lower bound of the amount of randomness required for
the information masking task in terms of a measure of how
unevenly information is distributed between the system and
the environment. This suggests that the important quantity for
determining the minimal randomness consumption is not the
exact amount of quantum correlation allowed between two
parties but the unevenness of information distribution between
two parties. Our result has implications for quantum secret
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sharing protocols and a class of proposals for resolving the
black-hole information paradox called scrambling [5].

Let B(H) be the space of operators on a finite-dimensional
Hilbert space H and let S(H) be the set of quantum states on
the Hilbert space H. A masking process or quantum masker
[3,4] �M : B(HQ) → B(HA ⊗ HB) hiding a set � ⊂ S(HQ)
of quantum states is an invertible quantum map [a completely
positive trace preserving (CPTP) map the inverse of which is
also a CPTP map] that has constant marginal states for inputs
from �, i.e.,

∀ρ ∈ �, TrB�M (ρ) = σA, and TrA�M (ρ) = σB, (1)

namely, a quantum masker distributes a quantum state to two
parties so that each party has no access to any information
about the original quantum state. When � = S(HQ), the
masker is called universal and if the masker maps the pure
state to the pure state then it is called unitary or isometry. Its
invertibility allows the following expression [6]:

�M (ρ) = M(ρQ ⊗ σS )M†, (2)

with some isometry M : HQ ⊗ HS → HA ⊗ HB and a quan-
tum state σS . We call the state σS the safe state of the masking
process and we interpret it as a quasiclassical randomness
source that is needed to mask the quantum information. One
can interpret the von Neumann entropy of safe state σS as the
randomness cost R(�M ) of �M , which is defined for any pure
state |φ〉 ∈ HQ:

R(�M ) := S[�M (|φ〉〈φ|Q)] = S(σS ), (3)

where S is the von Neumann entropy. Our interest is to investi-
gate the relation between the randomness cost of the masking
process and the characteristics of quantum interaction M of
the process. The following result on the size of each party
is known [4,7,8]. Hereinafter, log denotes the logarithmic
function with base 2.

Fact 1: The generalized quantum masking theorem. For
a universal quantum masker �M : B(HQ) → B(HA ⊗ HB)
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with constant marginal states σA and σB for systems A and
B and the safe state σS , we have

min{S(σA), S(σB), S(σS )} � log2 dim(HQ).

If σS = ∑
i pi|i〉〈i|S is the spectral decomposition of σS ,

then �M can be expressed as a random isometry operation:

�M (ρ) =
∑

i

piMiρM†
i , (4)

where Mi := M(1Q ⊗ |i〉S ) are isometries from HQ to HA ⊗
HB. We will call such isometry a bipartite embedding. These
isometries also have orthogonal images (M†

i Mj = 0 if i 	= j).
Such decomposition of �M is unique up to degeneracy of the
spectrum of the safe state σS .

In quantum information theory, there is a unique conserva-
tion law of information in contrast with classical information
theory. When an entangled state |�〉RQ undergoes an arbitrary
isometry U : HQ → HA ⊗ HB, then the system R’s mutual
information with two output systems A and B is conserved
in the following sense. One can consider that system R is the
reference system of system Q.

Fact 2: Information conservation law.

2S(R) = I (R : A) + I (R : B). (5)

We note that this simple law alone can derive both the
no-hiding theorem [2] and the no-masking theorem [3]. If
the bipartite embedding U : HQ → HA ⊗ HB is a hiding or
masking process so that output system A is in a constant
quantum state regardless of the input state of system Q,
then for a maximally entangled state |�〉RQ with dim(HQ) =
dim(HR) = d we have I (R : A) = 0 as systems R and A are
in a product state. But this immediately implies I (R : B) =
2 log2 d > 0. This implies that there is no bipartite embedding
that can hide quantum information from both parties. From
this observation we can expect the information conservation
law could give an insight on the generalized quantum masking
theorem.

We can interpret I (R : A) as the information flow from Q
to A when TrB(U · U †) is considered a channel from Q to A.
We can intuitively anticipate that if too much information has
flowed to a single system then a large amount of randomness
is needed to “scramble” to mask that information, just as it is
for the classical one-time pad cipher. In the following section,
we first prove an easily applicable result that verifies this
intuition from simple entropic properties, and again prove a
stronger theorem from an information-theoretic argument.

II. MAIN RESULTS

A. Unitarily maskable set conjecture

From now on, we will call a masking process �M :
B(HQ) → B(HA ⊗ HB) d dimensional if the states being
masked by it are d dimensional, i.e., if d = dim(HQ). After
that, we will fix a d-dimensional universal quantum masker
�M and its bipartite embedding decomposition �M (ρ) =∑

i piMiρM†
i . Also every entropic quantity with subscript i

refers to the corresponding quantity for the pure state (1R ⊗
Mi )|�〉RQ of the tripartite system RAB and unindexed entropic
quantities such as S(X ) are the corresponding values for

system X in the state (1R ⊗ �M )(|�〉〈�|RQ) of the tripartite
system RAB. For every quantum channel N into HA ⊗ HB, we
will denote its partial traces as TrB ◦ N = N A and TrA ◦ N =
N B.

We first investigate the power of the isometry quantum
masker by disproving the conjecture given in [3].

Conjecture 1: Modi et al. [3]. For every isometry quantum
masker M(·) = M · M† : B(HQ) → B(HA) ⊗ B(HB) with
m = dim(HQ), its set of maskable states is in a “disk,”
i.e., the convex hull of a set of states {|ψ〉〈ψ | : |ψ〉 =∑m

k=1 rkeiθk |k〉, θk ∈ [−π, π ]} with fixed non-negative real
numbers rk such that

∑
k r2

k = 1 and a fixed orthonormal basis
{|k〉}m

k=1.
We give a counterexample that disproves this conjecture.

Consider a qudit-qudit system HQ, that is, dim(HQ) = d2,
and an isometry masking process M which is simply dis-
tributing a qudit to each party. Note that this masking process
is essentially equivalent to any masking process from a d2-
dimensional system to two d-dimensional parties since any
d2-dimensional unitary applied before the distribution only
amounts to a change of basis.

Now, consider the set W of bipartite states that has max-
imally mixed states as its marginal states. This is a set of
maskable states of the masking process M given above.

Assuming Conjecture 1, suppose that there exists a basis
{|Tk〉}d2

k=1 of HQ such that every state in W has the same
diagonal element with respect to this basis. This implies that
for any local basis {|a j〉}d

j=1 and {|b j〉}d
j=1 of HA and HB,

respectively, the following constraint is required with varying
phases θ j ∈ [−π, π ] for any 1 � j � d:

1

d

∣∣∣∣∣∣
∑

j

eiθ j 〈Tk|(|a j〉 ⊗ |b j〉)

∣∣∣∣∣∣
2

= const, (6)

for every 1 � k � d2. This follows from the fact that
1√
d

∑
j eiθ j |a j〉 ⊗ |b j〉 is in W for any local bases {|a j〉}d

j=1 and

{|b j〉}d
j=1 and phases {θ j}d

j=1.
If |Tk〉 is not a product state, then one can violate the

constraint above by picking the Schmidt bases of |Tk〉 as local
bases. This is because, when s(k)

i � 0 are Schmidt coefficients
of |Tk〉, 1

d | ∑ j eiθ j s(k)
j | cannot be constant with varying phases

θ j if more than one s(k)
j are nonzero. Therefore {|Tk〉}d2

k=1 is a
product basis of the form |Td (i−1)+ j〉 = |αi〉A|β j〉B for some lo-
cal bases {|α j〉}d

j=1 and {|β j〉}d
j=1. However, requiring the con-

straint above again for the discrete Fourier-transformed local
bases {|α̃ j〉 := ∑

l
1√
d

ei2π jl/d |αl〉}d
j=1 (and similarly defined

{|b̃ j〉}d
j=1) leads to the violation of the constraint. Therefore

there exists no such basis {|Tk〉}d2

k=1.
This suggests that information hidden by a quantum mask-

ing process exploiting the inherent multipartite structure of a
quantum state (e.g., interpreting a four-level system as a two-
qubit system) need not be limited to the phase information
with respect to a certain “classical” basis. In fact, any kind
of correlation between two subsystems (be it quantum or
classical) could be hidden when these two subsystems are
separate.
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B. Randomness cost of quantum masking

The information conservation law suggests that at least
log2 d bits of information should leak to at least one party, but
our counterexample suggests that log2 d bits of information
need not correspond to the classical information with respect
to some preferred basis. Indeed, the information could corre-
spond to quantum information of a

√
d-dimensional quantum

system. We are left in the situation in which there is no
convenient geometrical tool to analyze the masking power
of each isometry quantum masker, i.e., bipartite embedding.
Thus the information conservation law (5) is the best principle
one could rely on. By using some simple entropic properties,
we can first derive the following preliminary result about
quantum masking processes consuming randomness. Proofs
of the theorems in the following sections can be found in the
Appendix.

Theorem 1. For any universal quantum masker �M and any
set of its bipartite embeddings {Mi},

max
X∈{A,B}

∑
i

piI (R : X )i � R(�M ).

This result already implies the generalized quantum mask-
ing theorem since maxX∈{A,B}

∑
i piI (R : X )i � log2 d as∑

i piI (R : A)i + ∑
i piI (R : B)i = 2 log2 d from the informa-

tion conservation law.
However, often the lower bound above is not enough for

many quantum maskers. A more detailed result can be ob-
tained by observing that quantum masking process consuming
randomness can be considered a channel mixing process. We
can derive the following tradeoff relation between the channel
capacity of a subchannel and its mixing probability.

Theorem 2. Let a quantum channel N be given as a convex
sum of subchannels {Ni}, i.e.,

∑
i piNi = N . Then for all i

the difference of the entanglement-assisted classical capacity
CEA of Ni and N is upper bounded by the information content
of the randomness source for its corresponding i, i.e.,

CEA(Ni ) − CEA(N ) � − log2 pi. (7)

Note that actually the proof of the theorem above can be
applied to the classical capacity of the quantum channel with
any kind of proper resource assumption, not necessarily the
unboundedness of predistributed entanglement.

From the fact [9,10] that for any quantum channel N :
A′ → B

max
φAA′

I (A : B)τAB = CEA(N ), (8)

where φAA′ is a pure state on AA′ and τAB = (1A ⊗
NA′→B)(φAA′ ), we have the following corollary,

max{I (R : A)τRA, I (R : B)τRB} � − log2 pi, (9)

for an arbitrarily given bipartite pure state φRQ with τRAB =
(1R ⊗ �i )(φRQ). Choosing arbitrary maximally entangled
state φRQ and averaging both sides of (9) leads to the following
result.

Corollary 1. For any d-dimensional universal quantum
masker �M with the safe state with spectrum {pi}, the fol-

lowing inequality holds:

log2 d +
∑

i

pi|S(A)i − S(B)i| � R(�M ). (10)

Corollary 1 can be considered a combination of two results.
First, higher information influxes should be scrambled with
a larger amount of randomness if their net influx should be
suppressed under a certain value. Second, information cannot
be destroyed or hidden under unitary interaction; it flows
either to the system or to the environment. Therefore, a set of
unitary interactions that allow information flow to each party
to be more even requires a smaller amount of randomness to
form a quantum masking process.

It is worth defining a measure of evenness of information
distribution between two parties that only depends on the
set of bipartite embeddings. Consider a measure defined in
the following way with the notation Ii := max{I (R : A)i, I (R :
B)i}:

I1({Mi}i∈I ) := max
|�〉

min
S⊆I

H

({
1

2Ii

}
i∈S

)
, (11)

where H ({ti}i∈T ) := −∑
i∈T ti log2 ti is formally defined as

the Shannon entropy even for the set of non-negative numbers
{ai}i∈T that is not a probability distribution. The maximization
is over the choice of initial bipartite pure state |�〉RQ and the
minimization is over the subset of indices S ⊆ I such that∑

i∈S 2−Ii � 1 with existence of i0 ∈ S such that
∑

i∈S 2−Ii −
2−Ii0 � 1. Since I1 is a monotone increasing function of
max{I (R : A)i, I (R : B)i} for each i and each Ii = log2 d +
|S(A)i − S(B)i| signifies how unevenly information flows to
A and B when the bipartite embedding Mi is applied, I1 is a
legitimate measure of information unevenness. I1 is bounded
as log2 d � I1 � 2(1 + d−1) log2 d .

Once the one-shot measure I1 is defined, one can define
its regularized version I∞({Mi}) := limn→∞ 1

nI1({Mi}⊗n).
This regularized measure has the bound of log2 d � I∞ �
2 log2 d . We have the following lower bound of the random-
ness cost of the quantum masking process that is a monotone
decreasing function of evenness of information distribution
thereof.

Theorem 3. For any d-dimensional universal quantum
masking process �M composed of random bipartite embed-
dings {Mi}i∈I with orthogonal images, the following inequality
holds:

I∞({Mi}i∈I ) � R(�M ). (12)

It is worth noting that Theorem 3 can be saturated (e.g.,
quantum one-time pads [11] and four-qubit maskers [4]).
An important implication of the inequality above, which is
highlighted in the difference between the naïve Theorem 1
and the more refined Corollary 1 and Theorem 3, is that the
most relevant property of the masking interaction is not the
mean information flow, but the mean evenness of information
flow. For example, for a hiding process in which information
entirely flows to system A with the total probability of 1/2 and
vice versa for system B, the mean information flow for each
system is the same. However, the evenness of information flow
is at a minimum in any subchannel, therefore this process
requires at least 2 log2 d bits of randomness for masking d-
dimensional quantum information.
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The measure I1({Mi}i∈I ) can be interpreted as the ran-
domness cost of a masking process that can be formed by
mixing bipartite embeddings from {Mi}i∈I with the probability
assignment that assigns as much probability as possible to
the bipartite embeddings with the most even information
flow. Such a strategy is optimal for minimizing randomness
cost since bipartite embeddings with evener information flow
themselves can hide more information even before being
mixed and they also can take up larger probability according
to Theorem 2. I∞({Mi}i∈I ) can be useful since the afore-
mentioned probability assignment can lead to an incomplete
probability distribution, but employing the same assignment
strategy for the tensor product of the given set of bipartite
embeddings results in an incomplete probability distribution
that is closer to a complete one. Note that concentrating
probability to a small set can decrease the overall randomness.
Discrepancy between this value and the real randomness cost
can happen if the bipartite embeddings with the most even
information flows have been poorly chosen so that they do not
effectively cancel each other.

One possible issue of randomness usage in the quantum
information process is the nonuniformity of the randomness
source. However, typicality of the random state [12] asserts
that one could treat many copies of a nonuniform random state
as a single uniform random state when one can permit a small
error. The robustness of Theorem 2 guarantees the robustness
of the inequalities above, as one can substitute all Ii terms with
Ii − e for the nonperfect masking case with the entanglement-
assisted classical capacity e. Therefore the results shown
here are compatible with other analyses on random quantum
processes that use uniform randomness exclusively [4,13].

It is impossible to delete quantum information [14]. There-
fore, to hide information from one system, unless one just
displaces quantum information to another system, one needs
to “cancel out” the information by randomly altering the
information. What Theorem 2 says is that a large amount of
information leakage requires a large amount of randomness to
conceal it. From this one might speculate that the presence of
a single “large” information leakage subchannel may require
a large amount of randomness to scramble it, i.e.,

max
X∈{A,B},i

I (R : X )i

?
� R(�M ). (13)

The following example, however, disproves this speculation.
A subchannel with high channel capacity need not be canceled
by other highly randomized subchannels with equally high
channel capacity, if partial distribution of quantum infor-
mation to two parties is allowed. Note that we still have
mini maxX∈{A,B} I (R : X )i � R(�M ) nonetheless.

Consider the following families of bipartite embeddings
HQ → HA ⊗ HB, defined on a d-dimensional Hilbert space
HQ with odd number d . For an input state |ψ〉I = ∑d

i=1 αi|i〉I

with fixed bases {|i〉X } for each X ∈ {A, B, I}, MA,i|ψ〉I :=
(Zi|ψ〉A) ⊗ |i + d〉B, MB,i|ψ〉I := |i + d〉A ⊗ (Zi|ψ〉B), for
1 � i � d and Mj |ψ〉I := ∑

i αi|i ⊕ j〉A ⊗ |i ⊕ 2 j〉B, where
⊕ stands for modular sum modulo d for 1 � j � d − 1.

One can observe that MA,i and MB,i are bipartite em-
beddings with completely uneven information flow but Mj

has even flow. These bipartite embeddings with a safe state

σS := ∑d
i=1

1
d (d+1) |A, i〉〈A, i|S + ∑d

i=1
1

d (d+1) |B, i〉〈B, i|S +∑d−1
j=1

1
d+1 | j〉〈 j|S form a universal quantum masker with

R = log2(d + 1) + 2
d+1 log2 d . Although maxi I (R : X )i =

2 log2 d , we have R < 2 log2 d for all d � 2. However,
the bound above almost sharply captures the random-
ness cost with the small gap of R − I1 = log2(1 + d−1) −

d−1
d (d+1) log2 d that approaches zero as d → ∞.

III. DISCUSSION

A. Sharing the quantum secret without attending

For every quantum masker �M , its safe state σS’s purifica-
tion system K (meaning that there exists a bipartite pure state
|�〉SK such that TrK |�〉〈�|SK = σS) automatically shares its
share of the quantum secret generated from a (2,3)-threshold
quantum secret sharing scheme [15], without interacting with
either of the systems S and Q. Here the quantum secret is the
quantum information that has been masked. This statement
means that either of two groups of parties, AK or BK , can
restore the quantum information that was masked without help
of the other party. This is a direct result of the no-hiding
theorem [2], which states that if the quantum information
is hidden from one party then it should be isometrically
transferred to the remaining parties.

In the quantum masking scenario, if the quantum infor-
mation is hidden from, say, system A, it is isometrically
transferred to systems BK , which allows them to restore the
quantum information directly. This observation implies that
initially distributed entanglement has the ability to transfer a
share of the quantum secret generated at a later point in time,
and the inequality derived in this paper gives the lower bound
on the amount of entanglement in terms of the property of
interactions used in the masking process. This observation
yields an insight on the process of black-hole evaporation
discussed in the next section.

We remark that this observation allows us to estimate the
sizes of unauthorized sets of not only the (2,3)-threshold
quantum secret sharing protocol but also any pure (k, 2k −
1)-threshold protocol with our result. This follows from the
observation that partitioning 2k − 1 parties into any three
unauthorized sets yields the (2,3)-threshold quantum secret
sharing protocol. This lower bound is stronger than the pre-
viously known log2 d bound [8] and admits estimation of
sizes of unauthorized systems for nonperfect quantum secret
sharing protocols from the robustness against error.

B. Black-hole evaporation

Hawking’s semiclassical analysis [16,17] of the outgoing
radiation from a black hole indicates that the flow of particles
from a black hole should contain no information related to
in-fallen matter. In addition, information cannot be stored
in the black hole because it can be vanished at the final
stage of its evaporation. This is impossible unless quantum
information can be lost, which is forbidden by the unitarity
of quantum mechanics. From these observations one could
conclude that the information of in-fallen matter should be
“masked” into the correlation between the black hole and the
Hawking radiation thereof. Since there is no limitation to the
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quantum state of in-fallen matter, the hypothetical masking
process, if any, should be universal. However, the no-masking
theorem says that this is impossible if the masking process
is unitary. This paradox is called the black-hole information
paradox.

A possible resolution of the black-hole information para-
dox is fast scrambling in a black hole [5]. Once a black hole
starts in a pure quantum state and if the time evolution after
its creation is unitary, then the black hole’s internal state is
always entangled with the Hawking radiation it has emitted. It
is believed that after the Page time [18] of the given black hole
the black hole’s internal state is nearly maximally entangled
with all the Hawking radiation that has been radiated up to
that point. The analysis in [5] suggests that in this scenario
any k qubit of information falling into the black hole can
be almost perfectly retrieved by an observer who has access
to all the Hawking radiation emitted from the black hole by
acquiring just a little bit more Hawking radiation up to k + c
qubits where c is a constant that depends only on the desired
error rate. In other words, black holes function as mirrors in
the model.

The model depends on the ad hoc assumption of typical
unitary evolution under Haar distribution of the black-hole
internal state and the assumption that its entire surface partic-
ipates in the scrambling process. This assumption, however,
is not indispensable [19]. Our result here gives a way to
examine the consistency between assumptions on scrambling
and evaporation processes.

Here we suppose the internal interaction and evaporation
process of a black hole as a quantum masking process since
after the emission of k qubits through Hawking radiation
either the black-hole internal state or the just radiated k qubits
of emission should not have any information on the k qubits of
the in-falling object. When written in the notations of Eq. (1),
the in-falling object’s system is Q, the black hole’s internal
state is that of system S, the in-falling Hawking radiation is
A, and the outgoing Hawking radiation is B. Suppose that for
a given moment parametrized by time T of a black hole’s
lifetime the internal interaction is determined by unitary M
(with the accompanying set of bipartite embeddings {Mi :=
M(1 ⊗ |i〉)}i∈I ,) from a hypothetical theory on the black-hole
dynamics. From this, one can calculate I∞({Mi}i∈I ). Further,
if the entropy of entanglement of the black hole (the contri-
bution of which is dominant in the thermodynamic entropy
of the black hole [20] without a firewall [21]) for the given
moment is S(T ), and only a c(t∗) fraction (0 � c � 1) of the
black-hole surface can participate for the given scrambling
time t∗, then we have the following relation:

I∞({Mi}i∈I ) � c(t∗)S(T ). (14)

Even without explicit calculation of I∞({Mi}i∈I ), one already
has the relation between the reflection capacity of the black
hole and its entropy of entanglement at the moment from
the trivial lower bound of k � I∞({Mi}i∈I ) where k is the
number of qubits that can be scrambled at a time with given
scrambling time t∗. In other words, in the early or late stage of
a black hole’s evolution (i.e., S is small) the black hole should
have very small reflection capacity. This relation provides
a way to check consistency between quantities determined
from independent theories such as scrambling time, internal

evolution of a black hole, and time evolution of the entropy of
entanglement of a black hole. Especially, when the internal
interaction of a black hole is inherently asymmetric (e.g.,
information only “heads” outward through radiation as it is
proposed in [20] as quantum one-time pad encoding of in-
fallen information or information always coherently “falls”
into the horizon for each bipartite embedding) the upper
bound of the reflection capacity of a black hole can drop up to
half of the entropy of entanglement of the black hole.

Note added. We recently learned of the independent result
of Ding and Hu [22] on counterexamples of Conjecture 1 for
the qutrit unitary quantum masker. We remark that the coun-
terexample in the present paper forms a different family of
quantum states from that of [22] as it is for d � 4-dimensional
unitary quantum maskers.
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APPENDIX: PROOF OF THE RESULTS

Theorem 1. For any universal quantum masker �M and any
set of its bipartite embeddings {Mi},

max
X∈{A,B}

∑
i

piI (R : X )i � R(�M ).

Proof. Without loss of generality, we can assume X = A.
Then as I (R : A)i = S(R)i + S(A)i − S(B)i = S(R) + S(A)i −
S(B)i it suffices to prove the following inequality:

S(R) +
∑

i

piS(A)i � H ({pi}) +
∑

i

piS(B)i, (A1)

because H ({pi}) = S(σS ), where H ({qi}) := −∑
i qi log2 qi

is the Shannon entropy of the probability distribution {qi}. As∑
i piS(ρi ) � S(

∑
i piρi ) from the concavity of von Neumann

entropy [23], we have

S(R) +
∑

i

piS(A)i � S(R) + S(A) = S(RA), (A2)

because systems R and A are in a product state because of the
masking property of �M . If we define �A

i (ρ) := TrB(M(ρI ⊗
|i〉〈i|S )M†), S(RA) equals to

S

[∑
i

pi(1R ⊗ �A
i )(|�〉〈�|RQ)

]
. (A3)

From the following property of von Neumann entropy [23],

S

(∑
i

qiρi

)
� H ({qi}) +

∑
i

qiS(ρi ), (A4)

we have

S(RA) � H ({pi}) +
∑

i

piS(RA)i. (A5)

This proves the wanted inequality since S(RA)i = S(B)i be-
cause systems RAB are in a pure state. Since this inequality
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holds for arbitrary maximally entangled state |�〉RQ, we have
the wanted result. �

Theorem 2. Let a quantum channel N be given as a convex
sum of subchannels {Ni}, i.e.,

∑
i piNi = N . Then for all i

the difference of the entanglement-assisted classical capacity
CEA of Ni and N is upper bounded by the information content
of the randomness source for its corresponding i, i.e.,

CEA(Ni ) − CEA(N ) � − log2 pi. (A6)

Proof. We first prove the case where N is a complete
erasure channel [CEA(N ) = 0]. In this case, no information
should be conveyed over N . Assume that for some i

CEA(Ni) > − log2 pi. (A7)

Then there exist ε, δ > 0 for all positive integers n > 0 such
that

pn
i (1 − δ) >

1

2n(1−ε)CEA(Ni )
. (A8)

We now consider an information transfer task between an
encoder and a decoder. The encoder uniformly samples an
arbitrary letter L from N possible candidates, then encodes
and transfers it by using the channel N multiple times with the
assistance of an unbounded amount of entanglement. Since
N is a completely lossy channel, the decoder should have no
information at all about the letter L. Therefore the probability
of the decoder guessing the letter L correctly should never
exceed 1

N .
Nevertheless if the encoder and the decoder choose a

strategy in which they always assume that the channel is Ni

instead of N , then because of the achievability theorem, with
the probability that is no less than pn

i (1 − δ), the decoder
can guess the letter L uniformly sampled from 2n(1−ε)CEA(Ni )

possible alphabets, by using the channel n times with suffi-
ciently large n. However, as pn

i (1 − δ) > 2−n(1−ε)CEA(Ni ) from
the assumption, this contradicts the previous statement.

Now, for the case of capacity CEA(N ), one can only have
up to 2nCEA(N )-fold probability enhancement for correctly
guessing the letter with the lowest probability, when using the
channel n times, compared to the complete erasure channel
case. But still negation of the assumption yields the existence
of an index i for which positive ε and δ exist for any positive

integer n such that

pn
i (1 − δ) >

2nCEA(N )

2n(1−ε)CEA(Ni )
. (A9)

This implies the existence of the strategy of Alice and Bob
achieving a probability strictly higher than the maximum
probability. �

Theorem 3. For any d-dimensional universal quantum
masking process �M composed of random bipartite embed-
dings {Mi}i∈I with orthogonal images, the following inequality
holds:

I∞({Mi}i∈I ) � R(�M ). (A10)

Proof. We first prove the following seemingly weaker
inequality:

I1({Mi}i∈I ) � R(�M ) + 2 log2 d

d
. (A11)

From Corollary 1 of the main text,

log2 d +
∑

i

pi|S(A)i − S(B)i| � R(�M ), (A12)

and the fact that Ii = log2 d + |S(A)i − S(B)i|, we have

max
|�〉

min
{pi}

∑
i

piIi � R(�M ), (A13)

where the maximization is over every bipartite state |�〉RQ

and the minimization is over every possible probability dis-
tribution {pi} that satisfies pi � 2−Ii for each i. When S is an
index set that saturates the minimization in the definition of
I1({Mi}i∈I ),

I1({Mi}i∈I ) = max
|�〉

min
S⊆I

H

({
1

2Ii

}
i∈S

)
, (A14)

the minimization term in (A13) with such probability as-
signment is larger than the Shannon entropy H ({2−Ii}i∈S0 )
with the index set S0 := S \ {i0}, because the probability
distribution saturating the minimization in (A11) is assigning
pi = 2−Ii to indices in some S′ with the lowest values of
Ii until

∑
i∈S′ 2−Ii � 1 and assigning the probability pi0 =

1 − ∑
i∈S′ 2−Ii to the index with the next smallest Ii0 and the

fact that {2−Ii}i∈S0 is an incomplete probability distribution.
Combined with the fact that any term 2−Ii Ii is not larger
than 2d−1 log2 d , this yields the wanted result (A11). By
noting that R(�M ) is additive, that is, R(�⊗n

M ) = nR(�M ),
regularizing both sides of (A11) yields (A10). �
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